
Dr. rer. nat.
Leander Geisinger
leander.geisinger@ hfwu.de
Professor für Quantitative Methoden in der Betriebswirtschaft
Campus: CI10 320
Sigmaringer Str. 25
72622 Nürtingen
- Seit 2021 Professor für quantitative Methoden in der Betriebswirtschaft Fakultät für Betriebswirtschaft und Internationale Finanzen Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen
- 2018 – 2021 Senior Investment Manager Allianz Investment Management SE, Stuttgart
- 2017 – 2018 Leiter der Produktentwicklung Firmenkunden, betriebliche Altersvorsorge und Pflegevorsorge Allianz Lebensversicherungs-AG, Stuttgart
- 2014 – 2017 Assistent des Verantwortlichen Aktuars und Bereichsleiters Produktentwicklung und Aktuariat Allianz Lebensversicherungs-AG, Stuttgart
- 2012 – 2014 Lecturer und Research Fellow am Department of Mathematics und Department of Physics Princeton University, NJ, USA
- 2009 – 2012 Forschungsaufenthalte am Imperial College London und am Institut Mittag-Leffler, Stockholm
- 2011 Promotion in Mathematik an der Universität Stuttgart
- 2006 Fellow Intern bei McKinsey & Company Inc.
- M. Beißer, L. Geisinger, and R. Korn, A worst-case approach for interest rate stresses and stock crashes, IMA Journal of Management Mathematics (2021) doi.org/10.1093/imaman/dpab019
- R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math. 712 (2016), 1–37.
- L. Geisinger, Poisson eigenvalue statistics for random Schrödinger operators on regular graphs, Ann. Henri Poincaré 16 (2015), no. 8, 1779–1806.
- L. Geisinger, Convergence of the density of states and delocalization of eigenvectors on random regular graphs, J. Spect. Theory 5 (2015), no. 4, 783–827.
- R. L. Frank and L. Geisinger, The ground state energy of a polaron in a strong magnetic field, Comm. Math. Phys. 338 (2015), no. 1, 1–29.
- L. Geisinger, A short proof of Weyl’s law for fractional differential operators, J. Math. Phys. 55 (2014), no. 1, 011504.
- R. L. Frank and L. Geisinger, Semi-classical analysis of the Laplace operator with Robin boundary conditions, Bull. Math. Sci. 2 (2012), no. 2, 281–319.
- L. Geisinger, A. Laptev, and T. Weidl, Geometrical versions of improved Berezin-Li-Yau inequalities, Journal of Spectral Theory 1 (2011), no. 1, 87–109.
- L. Geisinger and T. Weidl, Sharp spectral estimates in domains of infinite volume, Rev. Math. Phys. 23 (2011), no. 6, 615–641.
- R. L. Frank and L. Geisinger, Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain, Mathematical results in quantum physics, World Sci. Publ., Hackensack, NJ, 2011, pp. 138–147.
- L. Geisinger and T. Weidl, Universal bounds for traces of the Dirichlet Laplace operator, J. Lond. Math. Soc. 82 (2010), no. 2, 395–419.
- L. Geisinger, A sharp Lieb-Thirring inequality with a remainder term, Oberwolfach Reports 6 (2009), no. 1, 384–386.
- Beschreibende Statistik und Statistik
- Finanzmathematik
- Data Science in Finance und Financial Analytics
- Portfoliomanagement